If it's not what You are looking for type in the equation solver your own equation and let us solve it.
51x^2-31x=0
a = 51; b = -31; c = 0;
Δ = b2-4ac
Δ = -312-4·51·0
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-31}{2*51}=\frac{0}{102} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+31}{2*51}=\frac{62}{102} =31/51 $
| 2(w-6)-2=-4(-6w+6)-8w | | -t/4=-3£ | | 10b³-5b²+2b-1=0 | | 6a-7(6a-2)=-322 | | -3(-6x+9)-9x=5(x-7)-6 | | 3b/8+b/4=5/2 | | x-7+8=7 | | 2m-3=14 | | x+2=7x+14 | | 10x+x=22 | | 1+x-7x=-11 | | 8(x+6)=4x+40 | | 30(x+10)=1350 | | Xx5=15 | | 2f+8=9f-6 | | 4x2=59x+80 | | 5c+7=2c+25 | | X2-3x=5 | | 30(x+10)=900 | | 2=n/3-3 | | 8(2a-1)-5a=15+3(3a+3) | | -4(2-r)=8 | | (-8)x+8x=2 | | 4x^2-208x+929=0 | | 6(2-d)=9(d-4 | | 19=-9y-5=6y | | 7-2e=5e+3 | | 4h-3h=15 | | 8(4+p)=-16 | | 7-2e=5e=3 | | 78/9=x/4 | | 4(b-5)=-12 |